IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Models for collapse in trees and c-animals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 3515
(http://iopscience.iop.org/0305-4470/25/12/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:39

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math, Gen. 25 (1992) 3515-3521. Printed in the UK

Models for collapse in trees and c-animals

S Flesiat, D S Gauntt, C E Soteros} and S G Whittington§

t Department of Physics, King's College, Strand, London WC2R 2LS, UK

i Depariment of Mathematics, University of Saskatchewan, Saskatoon, Saskatchewan,
Canada S7TN OW(

§ Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1Al

Received 7 October 1991, in final form 17 March 1992

Abstract. We consider the phenomenon of collapse in a lattice model of a branched
polymer in a dilute solulion. We model the polymer as a lattice anitnal with a fixed
cyclomatic index (c), and consider two aliernative but equivalent interpretations in which
the collapse is driven either by the contact interaction between non-bonded nearest

neighbours, or by the decreasing quality of the solveni. We prove ihai ihe reduced
limiting free energy is independent of ¢. For the contact model, this implies that, if a
collapse transition exists at § = By (where e is the fugacity) for wrees (¢ = 0), then
a collapse transition occurs at 8¢ for all values of c. The critical paint of the solvent
model is — 89 /2, independent of ¢ and, moreover, the critical exponent « is the same
for both models, independent of ¢. We use these resulls to improve our numerical
estimates of the temperature dependence of the limiting free energy and confirm our
earlier estimate of the value of the ¢ross-over exponent ¢.

1. Introduction

Randomly branched polymers in dilute solution in a good solvent have been mod-
elled both as lattice animals and as lattice trees (Lubensky and Isaacson 1979, Parisi
and Sourlas 1981, Gaunt et a/ 1982, Janse van Rensburg and Madras 1992). If the
temperature is lowered or, equivalently, if the solvent quality is decreased, branched
polymers are thought to undergo a collapse transition from a coil t0 a ball. This
transition comes about through a competition between the monomer—-monomer in-
teractions and the monomer-solvent interactions. Attractive monomer-monomer and
repulsive monomer-solvent interactions will both favour collapse but these interac-
tions can work in the same or in opposite directions.

Several lattice models have been constructed which show evidence of a transition
of this type (Derrida and Herrmann 1983, Dickman and Schieve 1984, 1986, Dhar
1987, Lam 1987, 1988, Chang and Shapir 1988, Gaunt and Flesia 1990, 1991, Gaunt
1991, Flesia 1992). These models fall into two classes, in which the collapse is diiven
cither by a fugacity which is associated with the cyclomatic index, or by a fugacity
associated with non-bonded nearest-neighbour contacts. The cffect of monomer—
solvent interactions has not been explicitly included.

In order to investigate the relationship between trees and animals, Whittington et
al (1983) introduced the idea of a ¢-animal, i.e. a lattice animal with fixed cyclomatic
index (¢). If a, . is the number of weakly embeddable c-animals with n vertices,
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they proved that

0 < lim n"'loga, =logh, < oo (1.1)
n—od !
and that
A, =X Ye. (1.2

Assuming the functional form

2y o~ nTlA] (1.3)

n,c

they conjectured that
0, =6,-c (1.4)

and subsequently this result was proved rigorously by Soteros and Whittington (1988).

In this paper, we study a contact model of collapsing c-animals and prove that
the temperature dependence of the reduced limiting free energy is independent of e.

In addition, we introduce a new model in which the coliapse is driven explicitly
by solvent quality, i.e. by a repulsive interaction between each vertex of the animal
and nearest-neighbour unoccupied sites of the lattice. We refer to this as the solvent
perimeter model. For c-animals, we point out that the thermodynamics of the solvent
perimeter model and the contact model are the same. This equivalence will not exist
in more general models of branched polymers and the details of the competition
between monomer-monomer and monomer—sclvent effects in these models will be
the subject of a separate publication. ]

We make use of this equivalence, and of the e-independence of the two models,
to make improved numerical estimates of the temperature dependence of the reduced
limiting free energy. We argue that the value of the cross-over exponent ¢ is the
same for the two models and is independent of c.

2. Rigorous results

We consider c-animals weakly embedded in the d-dimensional simple hypercubic
lattice. If the c-animal has n vertices and e edges then, by Euler’s relation,

c=e—-n+1. (2.1)

We call a pair of vertices in the e-animal which are a unit distance apart but not
incident on a common edge, a contact. Similarly, we call an edge of the lattice,
incident on exactly one vertex of the c-animal, a solvenr contact, and we refer to
the set of solvent contacts of a c-animal as the solven! perimeter of the c-animal. In
figure 1 we show a c-animal on the square fattice with n = 10, e = 11, ¢ =2, k (the
number of contacts) = 2, s (the solvent perimeter) = 14. By counting edges in two
ways,

2dn =2e+ 2k + s (2.2)
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1!

Figure 1. A 2-animal weakly embedded in the square laitice.
which together with (2.1) gives
s=2[(d-1)n+1-c—k]. (2.3)

We write a,, .(k) for the number of c-animals with n vertices and & contacts,
and Z, .(4) for the corresponding partition function

Z,(8)=> a, (k)*. (2.9)
k
We note that ¢ = 0 corresponds to trees and that Madras e/ a/ (1990) proved that
the Jimit

lim n~tlog Z, o( 8) = Fo(A) (2.5)

exists and is a monotone non-decreasing, continuous, convex function of 3.
We now seek inequalities between Z (3) and Z,, .,,(8) by extending construc-
I Whittinatnn af -1 (101 D.. ndding a canarn ar tha tan vortov nf

+
LiU s Syl lll FIMLLHIBIVIL & Wi (1700 DY aullilpy a IYyuaiv ab v svpr veltva Wl a

c-animal, we obtain a (¢ 4+ 1)-animal with & unchanged, which yields the inequality

Gnyaepr(R) 2 a, (k). (2.6)

By deleting an appropriate edge in a (¢ 4+ 1)-animal with k& contacts, we obtain a
c-animal with (& + 1) contacts and this construction leads to the inequality

an,c-{-l(k) ‘~<~. zdnan,c(k_*- 1) . (2-7)

Taking logarithms in (2.6} and (2.7) and dividing by =, then letting »n — oo and using
an inductive argument on ¢, immediately gives the existence of the limit

F i3y = lim Pl P S A = A 72y
Ck ) _T::l‘;o (X3 lUB l_ln‘ck,lJ} (L-D)

with
F(B) = Fy(B) Ve. (2.9)

We now investigate the relationship between the contact model and the solvent
perimeter model for c-animals. Let g, .(s) be the number of weakly embeddable
c-animals with n vertices and s solvent contacts and define the partition function

QnolB) =Y a5 (). (2.10)
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From (2.3),

Qn,(B) = el ntl=ciN " (k)e=2Bke2flld-lnti=cly  (_2g). (2.11)
k

Taking logarithms, dividing by n and letting n — o0, gives
F(8)= lim n"'log Q, (8) =268(d— 1) + F(=28). (212

We note that this not only gives an exact relationship between the reduced limiting
free energies of the two models, but (2.11) gives a similar relationship between the
partition functions for all n.

We have shown that the limiting thermodynamics is independent of ¢ in each
model, and that the limiting thermodynamics of one model determines that of the
other. In particuiar, if a coiiapse transition exists the criticai vaiue of 3 for the contact
model (3,, say) is independent of ¢ and the critical point for the solvent perimeter
model is then —13,, independent of c. Moreover, critical exponents such as « are
the same for these two models, and independent of c.

In the last section, we showed that the 3-dependence of the limiting free energy for
c-animals is independent of ¢, and that there is a relationship between the contact
and solvent perimeter models. We now explore how this knowledge can be used to
improve our numerical estimates of the thermodynamics.

Recently, Gaunt and Flesia (1991) have cstimated the -dependence of the limit-
ing free energy of the contact model for trees using new exact enumeration data for
n £ 19 on the square lattice and n < 17 on the simple cubic lattice. From these data,
we can also calculate Z, (3) for values of ¢ = 1,2,... . In view of (1.3} and (1.4),
we might expect better convergence of ratio estimates for larger values of ¢ when
B = 0 and, presumably, for all values of 3 < 3,. As an example, we show in figure 2
ratio estimates and linear extrapolants of e”* for the square lattice using the results
for ¢ = 0,1 for two values of 3. As expected the convergence is faster for larger ¢
but, unfortunately, is accompanied by an increase in curvature, perhaps due to the
effectively shorter series. Nevertheless, these additional estimators are very useful in
forming our final estimates.

In a similar way, we can use the data for larger values of ¢ to provide improved
estimates of the cross-over exponent ¢. From (2.9) we know that if the critical
exponent « exists, then it must be indépendent of ¢. Assuming that « and ¢ are
related by the ‘hyperscaling’ relation 2 — o = 1/¢ (see e.g. Derrida and Herrmann
1983), we expect ¢ also to be independent of ¢. Defining the intensive heat capacity
C, . as

n,e

d2
C,(B)=n"! i log Z, .(8) (3.1)

we expect sharp peaks in C, (3) increasing smoothly in height as » increases.
According to finite size scaling theory, the height A scales as

ho o~ ne®, 3.2)

n,e
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Figure 2. Ratio estimates (open symbols) and linear extrapolants (full symbols) of e”¢
for the square lattice for ¢ = 0,1 and # = —1 (lower curves) and @ = +1 (upper
curves).
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Figure 3. Ratio estimaies (open symbols) and alternate linear extrapelants (full symbols)
of ag for the square lattice for e = 0, 1,2,
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and we present values of (a¢), . and their alternate linear extrapolants for the
square lattice plotted against 1/« for ¢ = 0, 1,2 in figure 3. The curves appear to
have a common limit, implying that ¢ is independent of c. We estimate the value of
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the common limit as

a¢ = 0.204+0.06 3.9
which, together with hyperscaling, gives

¢ = 0.6010.03 (d =2). (3.5)

The 3-dependence of the free energy F, for the contact model for trees on the
square and simple cubic lattices has been estimated by Gaunt and Flesia (1991) for
8 € 1.5 and 3 < 1.0, respectively. We can make indirect cstimates of the same
quantity by estimating F,(3) (using dara for various values of ¢} and making use
of the identity (2.12). We find that this indirect route allows us to make reliable
estimates of F,(3) for considerably larger values of 3. We give these estimates in
table 1 for the square lattice, and compare with the direct estimates of Gaunt and
Flesia (1991). Madras er al (1990) have shown that for the square lattice

log Ay < Fo(B) Slog,  8<0 (3.6)

and

max{log X,,4C/7 + 8} € Fo(B) L log Xy + 8 G>=0 (3.7

where C is Catalan’s constant, and A, (=~ 3.796) and A, (=~ 5.140) are the growth
constants for strongly and weakly embedded trees, respectively. The values of these
bounds are aiso given in table 1 for comparison.

Table 1. Estimates of the limiting free energy of the contact modei for trees on the
square lattice. = indicates that no direct estimate was possible.

Fo(#)
B Direct estimale Indirect estimate  Lower bound  Upper bound
—40 1339 + 0.002 1.339 + ¢.001 1.334 1.637
—-3.0 1348 £ (.002 1.347 + 0.00! 1334 1.637
-20 1371 £ 0.001 1.371 £ 0.001 1.334 1.637
-10 1439 £+ 0.001 1439 £ 0.001 1.334 1.637
0 1.637 £ 0.002 1.637 + 0.002 1.637 1.637
1.0 216 £ 004 220 + 004 2.166 2.637
L5 250+ 020 255 £ 015 2.666 3.137
20 0t 3.0 + 020 3.166 3.637
25 ¢ 3.45 + 0.25 3.666 4.137
3o ¢ 39 £ 030 4,166 4.637

4, Discussion

We have introduced a model of collapsing branched polymers which focuses directly
on the solvent quality. For the case of c-animals, we have shown that the thermody-
namics of this model and the thermodynamics of the contact model, are essentially
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equivalent, and that the limiting free energy is independent of ¢. These results pro-
vide a variety of routes for estimating the limiting (ree energy, and the cross-over
exponent ¢, of the contact model for trees. The existence of these additional estima-
tors is very helpful in making cur final estimates. Another especially useful feature is
that we are able to extend the range of values of 3 for which we can make reliable
estimates of the limiting free energy.

It is important to realize that the above mapping does not exist for unrestricted
fattice animals. More general models, in which there is a competition between contact
interactions and solvent effects, will be discussed in a future publication.
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