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Abstract. We consider lhe phenomenon of collapse in a lattice model of a branched 
polymer in a dilute solution. We model the poiymer as a lattice animal with a fixed 
cyclomatic index (c). and consider two alternative but equivalent interpretations in which 
lhe collapse is driven either by the contact interaction between non-bonded nearest 
niigbboiir, oi ay the decieasing qiiaiiij oi ;he soiveni. '#e prove mat ,ne rruuceu 
limiting free energy is independent o f  c. For the contact model, this implies that. if a 
collapse transition exists at P = PO (where e@ is the fugacity) for trees ( e  = 0). then 
a collapse transition occurs at  PO for all values of e. The critical point of the solvent 
model is - P o l Z ,  independent of c and, moreover, the critical exponent 01 is the same 
tar both models, independent of c. We use these results to improve our numerical 
estimates of the temperature dependence of the limiting free energy and confirm our 
earlier estimate o f  the value of the C ~ O S S O V C ~  exponent 4. 

_ L ~ .  _ L ~  ~ ~ - 1 ~ ~ ~ ~ 1  

1. Introduction 

Randomly branched polymers in dilute solution in a good solvent have been mod- 
elled both as lattice animals and as !anice trees $uhen&ky and !saarcon 1979, Parisi 
and Sourlas 1981, Gaunt et a1 1982, Janse van Rcnsburg and Madras 1992). If the 
temperature is lowered or, equivalently, if the solvent quality is decreased, branched 
polymers are thought to undergo a collapse transition from a coil to a ball. This 
transition comes about through a competition bctwcen the monomer-monomer in- 
teractions and the monomer-solvent interactions. Attractive monomer-monomer and 
repulsive monomer-solvent interactions will both favour collapse but these interac- 
tions can work in the Same or in opposite dircctions. 

Several lattice models have been constructed which show evidence of a transition 
of this type (Derrida and Herrmann 1983, Dickman and Schieve 1984, 1986, Dhar 
1987, Lam 1987, 1988, Chang and Shapir 1988, Gaunt and Flesia 1990, 1991, Gaunt 
1991, Flesia 1992). These models Pdll into two classes, in which the collapse is driven 
either by a fugacity which is associated with the cyclomatic index, or by a fugacity 
associated with non-bonded nearest-neighbour contacts. The  cfect of monomer- 
solvent interactions has not been explicitly includcd. 

In order to investigate the relationship between trees and animals, Whittington el 
ol (1983) introduced the idea of a c-animal, i.e. a lattice animal with fixed cyclomatic 
index ( e ) .  If anlc  is the number of weakly cmbeddable e-animals with n vertices, 
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they proved that 

and that 

Assuming the functional form 

they conjectured that 

e, = e, - c (1.4) 

and subsequently this result was proved rigorously by Soteros and Whittington (1988). 
In this paper, we study a contact model of collapsing c-animals and prove that 

the temperature dependence of the reduced limiting free energy is independent of c. 
in addition, we introduce a new modei in which the coiiapse is driven expiicitiy 

by solvent quality, i.e. by a repulsive interaction between each vertex of the animal 
and nearest-neighbour unoccupied sites of the lattice. We refer to this as the solvent 
perimeter model. For e-animals, we point out that the thermodynamics of the solvent 
perimeter model and the contact model are the same. This equivalence will not exist 
in more general models of branched polymers and the details of the competition 
between monomer-monomer and monomer-solvent effects in these models will be 
the subject of a separate publication. 

We make use of this equivalence, and of the c-independence of the two models, 
to make improved numerical estimates of the temperature dependence of the reduced 
limiting free energy. We argue that the value of the cross-over exponent 4 is the 
same for the two models and is independent of c. 

2. Rigorous results 

We consider c-animals weakly embedded in the d-dimensional simple hypercubic 
lattice. If the c-animal has n vertices and e edges then, by Euler's relation, 

c = e - 71 + 1 .  (2.1) 

We call a pair of vertices in the c-animal which are a unit distance apart but not 
incident on a common edge, a confacf. Similarly, we call an edge of the lattice, 
incident on exactly one vertex of the c-animal, a sohen1 conlacf, and we refer to 
the set of solvent contacts of a c-animal as thc sohien1 perimeler of the c-animal. In 
figure i we show a c-animai on the square kattice with n = io, e = ii, c = 2, k (the 
number of contacts) = 2, s (the solvent perimeter) = 14. By counting edges in two 
ways, 

2 d n  = 2 e +  2 k +  s (2.2) 
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Figure 1. A 2-animal weakly embedded in the square lattice. 

which together with (2.1) gives 

s = 2 [ ( d -  l ) n +  1 - c -  k]. (2.3) 

We write ~ * : = ( k )  for the  number of c-animals with n vertices and k contacts, 
and Z,,c(p) for the corresponding partition function 

We note that c = 0 corresponds to trees and that Madras er a1 (1990) proved that 
the iimit 

n-m lim n-'log Z,,,(p) 3 F0(p) (2.5) 

exists and is a monotone non-decreasing, continuous, convex function of p. 

L L U l l D  g"C" 111 . ."LLL"lgLu,r  C' U* (L,".,). 

c-animal, we obtain a ( c  + 1)-animal with k unchanged, which yields the inequality 

We now seek inequalities between Z,,,(p) and Zn,ct,((3) by extending construe- 
" J  LIY""lg a q " L I 1 L  L I L  L l l L  '"P " U l l L A  "1 '. +:"* -: ..-_ :* UIL:t+:-nt-..  " I  - ?  I t O Q l \  P.. ,>AA:sm D - . . o ~ P  ~t r h o  ,-.. . , -~+LII I  nf 9 

%t3,c+ l (k )  > % , A k )  ' (2.6) 

By deleting an appropriate edge in a ( c  + 1)-animal with k contacts, we obtain a 
c-animal with ( I C  + 1) contacts and this construction leads to the inequality 

Qn,e+i(k) < 'dnan,c(k+ 1). (2.7) 

l k m g  logarithms in (2.6) and (2.7) and dividing by n, then letting 1% - m and using 
an inductive argument on c, immediately gives the existence of the limit 

(2.8) IC. /,a\ - I : _  - - I  ,..- 7 I la\ 
T c \ P J  = ,'y& I L  '"I Y n , c l P l  

with 

F c ( P )  = Fci(P) v c .  (2.9) 

We now investigate the relationship between the contact model and the solvent 
perimeter model for c-animals. Let q, , , (s)  be the number of weakly embeddable 
c-animals with n vertices and s solvent contacts and define the partition function 
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From (2.3). 

Q n c  , (p) = eZPl(d--1jntl-4 .,,,( k)e -2P~e2P[ (d- l jn t l - c ]Z  n , c ( - 2 m  ’ (2.11) 
k 

%king logarithms, dividing by n and letting n - oa, gives 

F c ( p ) z  n-oo lim n - ’ l o g Q , , , ( P ) = 2 P ( d - l ) + ~ ~ ( - Z P ) .  (2.12) 

We note that this not only gives an exact relationship between the reduced limiting 
free energies of the two models, but (2.11) gives a similar relationship between the 
partition functions for all n. 

We have shown that the limiting thermodynamics is independent of c in each 
model, and that the limiting thermodynamics of one model determines that of the 
other. in particuiar, if a coiiapse transition exists the critical vaiue of@ for tne contact 
model (Po, say) is independent of c and the critical point for the solvent perimeter 
model is then -fp,, independent of c. Moreover, critical exponents such as a are 
the same for these two models, and independent of c. 

3. Numerical results 

In the last section, we showed that the @-dependence of the limiting free energy for 
c-animals is independent of c, and that there is a relationship between the contact 
and solvent perimeter models. We now explore how this knowledge can be used to 
improve our numerical estimates of thc thermodynamics. 

Recently, Gaunt and Flesia (1991) havc cstimatcd thc 0-dependence of the limit- 
ing free energy of the contact model for tree$ using new exact enumeration data for 
n < 19 on the square lattice and n < 17 on the simple cubic lattice. From these data, 
we can also calculate Z,,,(p) for values of c = 1,2 , .  . . . In view of (1.3) and (1.4), 
we might expect better convergence of ratio estimates for larger values of c when 
p = 0 and, presumably, for all values of p < 0,. As an example, we show in figure 2 
ratio estimates and linear extrapolants of eFo for the square lattice using the results 
for c = 0 ,1  for two values of p. As expected the convergence is faster for larger c 
but, unfortunately, is accompanied by an increase in curvature, perhaps due to the 
effectively shorter series. Nevertheless, these additional estimators are very useful in 
forming our final estimates. 

In a similar way, we can use the data for larger values of c to provide improved 
estimates of the cross-over exponent 4. From (2.9) we know that if the  critical 
exponent a exists, then ii must be independent of c. Assuming thai a and 4 are 
related by the ‘hyperscaling’ relation 2 - c* = 1 / 4  (see e.g. Derrida and Herrmann 
1983), we expect 4 also to be independent of c. Defining the intensive heat capacity 
ClqC as 

we expect sharp peaks in C,,,(p) increasing smoothly in height as n increases. 
According to finite size scaling theory, the height h, ,c  scales as 

h, ,c  - ne*. (3.2) 
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Figure 2. Ratio estimales (open symbols) and linear extrapolants (full symbols) of 
for the square lattice for c = 0,1  and p = -I (lower curves) and p = +1 (upper 
curves). 
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Figure 3. Ratio estimates (open symbols) and alternate linear extrapolanis (full symbols) 
of a4 for Ihc square lattice for c = 0, 1,2. 

A suitable ratio estimator of a@ is 

(3.3) 

and we present values of and their alternate linear extrapolants for the 
square lattice plotted against 1 / n  for c = 0,1,2 in figure 3. The curves appear to 
have a common limit, implying that @ is independent of c. We estimate the value of 
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the common limit as 

04 = 0.20 f 0.OG (3.4) 

which, together with hyperscaling, gives 

4 = 0 . 6 0 f 0 . 0 3  ( d = 2 ) .  (3.5) 

The @dependence of the free energy Fo for the contact model for trees on the 
square and simple cubic lattices has been estimated by Gaunt and Flesia (1991) for 
p 6 1.5 and p < 1.0, respectively. We can make indirect estimates of the same 
quantity by estimating F,(p) (using data for various values of c) and making use 
of the identity (2.12). We find that this indirect route allows us to make reliable 
estimates of F&3) for considerably larger values of p. We give these estimates in 
table 1 for the square lattice, and compare with the direct estimates of Gaunt and 
Flesia (1991). Madras er al (1990) have shown that for the square lattice 

logA, $ F o ( P )  < IogX, P < 0 (3.6) 

and 

maxtlog A0,4C/7r + 0)  < Fo(b’) $ log A, + P P >  0 (3.7) 

where C is Catalan’s constant, and A. (2 3.796) and A, (E 5.140) are the growth 
constants for strongly and weakly embedded trees, respectively. The values of these 
bounds are also given in table 1 for comparison. 

Table 1. Eslimates of lhe limiting free energy of the conlac1 model for trees on the 
square laltice. li indicates that no direcl estimale was possible. 

P 

-4.0 
-3.0 

__ 

-2.0 
-1.0 

0 
1.0 
1.5 

2.5 
3.0 

2.0 

Direct estimate 

1.339 5 0.002 
1.348 f 0.002 
1.371 f 0.001 
1.439 + 0.001 
1.637 i 0.002 
2.16 + 0.04 
2.50 f 0.20 

Indirecl cstimale 

1.339 f 0.001 
1.347 f 0.001 
1.371 f 0.001 
1.439 f 0.001 
1.637 f 0.002 
2.20 + 0.04 
2.55 i 0.15 
3.0 f 0.20 
3.45 f 0.25 
3.9 f 0.30 

lawer bound 

1.334 
1.334 
1.334 
1.334 
1.637 
2.166 
2.666 
3.166 
3.666 
4.166 

Upper bound 

1.637 
1.637 
1.637 
1.637 
1.637 
2.637 
3.137 
3.637 
4.137 
4.637 

4. Discussion 

We have introduced a model of collapsing branched polymers which focuses directly 
on the solvent quality. For the case of c-animals, we have shown that the thermody- 
namics of this model and the thermodynamics of the contact model, are essentially 



Models for collapse in irees and c-animals 3521 

equivalent, and that the limiting free energy is independent of c. These results pro- 
vide a variety of routes for estimating the limiting Cree energy, and the cross-over 
exponent 4, of the contact model for trees. The existence of these additional estima- 
tors is very helpful in making tiur final estimates. Another especially useful feature is 
that we are able to extend the range of values of p for which we can make reliable 
estimates of the limiting free energy. 

It is important to realize that the above mapping does not exist for unrestricted 
lattice animals. More general models, in which there is a competition between contact 
interactions and solvent effects, will be discussed in a future publication. 
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